GCE Examinations

Advanced Subsidiary

Core Mathematics C2

Paper E

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks could be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong
© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

C2 Paper E - Marking Guide

1. $=\left[2 x+x^{-1}\right]_{2}^{4}$

M1 A1
$=\left(8+\frac{1}{4}\right)-\left(4+\frac{1}{2}\right)=3 \frac{3}{4}$
M1 A1
(4)
2. $\mathrm{f}^{\prime}(x)=3 x^{2}+8 x-3$
increasing when $\quad 3 x^{2}+8 x-3 \geq 0$
M1 A1
$3 x^{2}+8 x-3 \geq 0$
$(3 x-1)(x+3) \geq 0$
$x \leq-3$ or $x \geq \frac{1}{3}$

M1
M1
A1 (5)
3. (a) $=\log _{2}\left(3^{2} \times 5\right)$

$$
=2 \log _{2} 3+\log _{2} 5=2 p+q
$$

B1
(b) $=\log _{2} \frac{3}{5 \times 2}=\log _{2} 3-\log _{2} 5-\log _{2} 2$

M1 A1

$$
\begin{equation*}
=p-q-1 \tag{6}
\end{equation*}
$$

B1 A1
4. (a) $(1+k x)^{7}=\ldots+\binom{7}{2}(k x)^{2}+\ldots$
$\therefore \frac{7 \times 6}{2} \times k^{2}=525$
$k^{2}=\frac{525}{21}=25$
M1
$k>0 \therefore k=5$
A1
(b) $(1+5 x)^{7}=\ldots+\binom{7}{3}(5 x)^{3}+\ldots$
\therefore coeff. of $x^{3}=\frac{7 \times 6 \times 5}{3 \times 2} \times 125=4375 \quad$ M1 A1
(c) $\begin{array}{ll}(1+5 x)^{7}=1+35 x+525 x^{2}+\ldots & \text { B1 }\end{array}$
$\begin{aligned}(2-x)(1+5 x)^{7} & =(2-x)\left(1+35 x+525 x^{2}+\ldots\right) \\ & =2+70 x+1050 x^{2}-x-35 x^{2}+\ldots \\ & =2+69 x+1015 x^{2}+\ldots\end{aligned}$ A1 (8)
5. (a) $\frac{1}{2} \sqrt{3}$

B1
(b) $\begin{array}{lllll}x & 0 & \frac{\pi}{6} & \frac{\pi}{3}\end{array}$

M1
$\begin{array}{llll}\cos ^{2} x & 1 & \frac{3}{4} & \frac{1}{4}\end{array}$
A1
area $\approx \frac{1}{2} \times \frac{\pi}{6} \times\left[1+\frac{1}{4}+2\left(\frac{3}{4}\right)\right]$
B1 M1

$$
=0.720(3 \mathrm{sf})
$$

A1
(c) area of $S=\int_{0}^{\frac{\pi}{3}} \sin ^{2} x \mathrm{~d} x=\int_{0}^{\frac{\pi}{3}}\left(1-\cos ^{2} x\right) \mathrm{d} x$ M1

$$
=\frac{\pi}{3}-0.71995=0.327(3 \mathrm{sf})
$$

M1 A1 (9)
6. (a) isosceles $\therefore \angle A M B=90^{\circ}$

B1

$B M=4 \tan 30^{\circ}=\frac{4}{\sqrt{3}}$
M1 A1
area $=\frac{1}{2} \times 8 \times \frac{4}{\sqrt{3}}=\frac{16}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{16}{3} \sqrt{3} \mathrm{~cm}^{2}$
M1 A1
(b) area of sector $=\frac{1}{2} \times 4^{2} \times \frac{\pi}{6}=\frac{4}{3} \pi$

B1 M1
shaded area $=\frac{16}{3} \sqrt{3}-\left(2 \times \frac{4}{3} \pi\right)$
M1

$$
=\frac{16}{3} \sqrt{3}-\frac{8}{3} \pi=\frac{8}{3}(2 \sqrt{3}-\pi) \mathrm{cm}^{2}
$$

A1
(9)
7. (a) $(-6,5) \therefore \begin{aligned} & 36+25-60-40+k=0 \\ & k=39\end{aligned}$

M1
A1
(b) $(x+5)^{2}-25+(y-4)^{2}-16+39=0$

M1
$(x+5)^{2}+(y-4)^{2}=2$
\therefore centre $(-5,4)$, radius $=\sqrt{2}$
A2
(c)

$$
\text { dist. }(2,3) \text { to centre }=\sqrt{49+1}=\sqrt{50}
$$

B1
$\begin{array}{rlr}\therefore & A B^{2}=(\sqrt{50})^{2}-(\sqrt{2})^{2}=48 & \text { M1 A1 } \\ & A B=\sqrt{48}=\sqrt{16 \times 3}=4 \sqrt{3} & \text { M1 A1 }\end{array}$
8. (a) end of $1^{\text {st }}$ year: $500 \times 1.06=530$
start of $2^{\text {nd }}$ year: $530+500=1030$
interest at end of $2^{\text {nd }}$ year $=0.06 \times 1030=£ 61.80$
M1 A1
(b) end of $8^{\text {th }}$ year: $500 \times\left(1.06+1.06^{2}+1.06^{3}+\ldots+1.06^{8}\right)$

$$
\begin{aligned}
& =500 \times S_{8} ; \text { GP, } a=1.06, r=1.06 \\
& =500 \times \frac{\left.1.06[1.06)^{8}-1\right]}{1.06-1} \\
& =5245.66 \therefore £ 5246 \text { (nearest pound) }
\end{aligned}
$$

(c) $(1.005)^{12}=1.0617 \ldots$
end of $8^{\text {th }}$ year: $\quad 500 \times \frac{1.0617\left[(1.0617)^{8}-1\right]}{1.0617-1}=5285.71$
$\therefore £ 40$ more in account (nearest pound)
B1
M1 A1
A1
M1 A1
M1 A1
A1
(12)
9. (a)
$\begin{array}{lll}\mathrm{f}(-1)=r & \therefore-1+k+7-15=r \\ & k=r+9 \\ \mathrm{f}(3)=3 r \quad \therefore & 27+9 k-21-15=3 r \\ & 3 k=r+3\end{array}$
M1
A1
M1
subtracting, $\quad 2 k=-6$
M1
$k=-3$
A1
(b) $r=-3-9=-12$ B1
(c) $\mathrm{f}(x)=x^{3}-3 x^{2}-7 x-15$
$\mathrm{f}(5)=125-75-35-15=0 \quad \therefore(x-5)$ is a factor
(d)

$$
\begin{aligned}
& \begin{aligned}
& x^{2}+2 x+3 \\
& \begin{array}{l}
x^{3}-3 x^{2}-7 x-15 \\
x^{3}-5 x^{2} \\
2 x^{2}
\end{array}-7 x
\end{aligned} \\
& \frac{2 x^{2}-10 x}{3 x}-15 \\
& 3 x-15 \\
& \therefore(x-5)\left(x^{2}+2 x+3\right)=0 \\
& x=5 \text { or } x^{2}+2 x+3=0 \\
& b^{2}-4 a c=2^{2}-(4 \times 1 \times 3)=-8 \\
& \text { M1 } \\
& b^{2}-4 a c<0 \quad \therefore \text { no real solutions to quadratic } \\
& \therefore \text { only one real solution }
\end{aligned}
$$

Performance Record - C2 Paper E

Question no.	1	2	3	4	5	6	7	8	9	Total
Topic(s)	integr.	$\left.\begin{array}{\|c\|} \hline \text { increasing } \\ \text { function } \end{array} \right\rvert\,$	logs	binomial	$\begin{array}{\|c} \text { trapezium } \\ \text { rule } \end{array}$	$\begin{array}{\|c} \text { Sector } \\ \text { Sof a } \\ \text { circle } \end{array}$	circle	GP	remain. theorem alg. div. aneore, and	
Marks	4	5	6	8	9	9	10	12	12	75
Student										

